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Experiments and theory on the rupture of a free plane viscous film are reported. The
relatively thick film, with a typical thickness of the order of 0.1–0.6 mm, rests between
two long parallel needles. When the film is punctured, a hole is formed with the rim
on the front. The hole expands, reaches the needles, and propagates along them with
a constant velocity of the order of 2–50 cm s−1. The Reynolds numbers for the present
experiments are relatively small, 0.002 � Re � 0.34. A crude theory for propagation
velocity of the rim is proposed; the theory compares well with the experimental data.
The rupture profile is visually similar to a U-shaped curve. Crude equations for the
rupture profile are derived, and their solutions are consistent with the experimental
observations. A theory for propagation velocity and profile of the rupture, applicable
to all Reynolds numbers, is proposed.

1. Introduction
Soap films and their rupture are universally familiar and, because of their visual

simplicity, attracted scientific attention more than a century ago. In an idealized
setting, the punctured film develops an expanding radial hole with a rim, which
collects the liquid. The film far from the rim remains undisturbed.

The first study of the inviscid soap-film rupture in such a setting was conducted by
Dupré (1867). Using energy balance, he obtained an expression for the rim velocity
U = (4σ/ρh)1/2, independent of the radius of the hole. Here, σ is the surface tension,
ρ is the liquid density, and h is the initial thickness of the film at rest. Rayleigh (1891)
studied the rupturing process of a soap film experimentally and found that his results
generally agreed with Dupré’s theory.

More sophisticated experiments were conducted by Ranz (1959). His results showed
that actual film edge velocity is about 10 % lower than that predicted by Dupré’s
formula. Further analyses, made independently by Taylor (1959) and Culick (1960),
gave a somewhat different result: using the correct momentum balance, they both
found that the hole in the soap film grows at the rate

UT C =

(
2σ

ρh

)1/2

. (1)

This is 1/
√

2 smaller than that computed by Dupré and Ranz. The validity of
this formula has been confirmed experimentally McEntree & Mysels (1969). Keller
(1983) proposed some extension of the Taylor–Culick momentum balance theory to
non-uniform threads and films and analysed the influence of various parameters on
the motion of the rim.
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Figure 1. Schematic view of the rupture front between two needles.

The dynamics of a rupturing soap film was also observed and discussed in detail
by Pandit & Davidson (1990). They measured the liquid-film thickness and velocity
of the moving rim. Taking into account the previous work, Pandit & Davidson
(1990) proposed two alternative methods for obtaining a formula for rim velocity –
momentum balance and energy balance, with the same formula, (1), as Taylor (1959)
and Culick (1960).

The subject of the papers mentioned above, is the rupture of inviscid (soap) films
and propagation of the circular rim, with a typical high Reynolds number. The rupture
of viscous plane films was considered in another group of papers. The first observations
of the disintegration of very viscous (viscoelastic) liquid films are reported by
Debrégeas, Martin & Brochard-Wyard (1995) and Debrégeas, de Gennes & Brochard-
Wyard (1998). The new feature, caused by viscous dissipation, is that after being
punctured, the liquid from the circular hole is not collected into a rim as it is in soap
films. Instead, the liquid spreads out with a thickness that increases uniformly in time.
The retraction radius and velocity grow exponentially with rise time µh/2σ , where µ

is the viscosity of the film. Brenner & Gueyffier (1999) considered the retraction of a
viscous (not viscoelastic) finite-length one-dimensional film. They demonstrated that a
ruptured film may or may not have a rim, depending on its Reynolds number Re and
length L. For fixed L and Re � 1, the rim exists and grows with time; the rim velocity
is governed by the Taylor–Culick equation (1). For small L (smaller that Stokes length
µ/ρUT C) and Re � 1, the rim disappears, and the film thickness grows uniformly with
time. This means that the viscous effects have an impact on the entire liquid film.

Sünderhauf, Raszillier & Durst (2002) investigated the dynamical acceleration of
the free two-dimensional edge of a liquid sheet toward the Taylor–Culick limit. Their
numerical simulations show images and features of the thickening film and streamlines
of the flow, for both high and low viscosity. For the low-viscosity regime, they find that
global momentum balance describes the velocity of contraction quite well. For large
viscosity, the rim extends into the liquid (in accordance with the results of Brenner &
Gueyffier 1999). They conclude that, for large times, the velocity of the thickening rim
always approaches the Taylor–Culick limit, (1). The results are applied to the stability
of liquid curtains. Also, Adachi et al. (1998) obtained the steady shape of a free edge
in a vertical liquid curtain in the inertia-dominated regime, and demonstrated the
impact of rim weight on the shape of the edge.

In this study, rupture of a viscous film between two parallel needles is considered.
Figure 1 shows a schematic of the experiment, and experimental results are shown
in figure 2. Unidirectional stationary propagation of the rupture front and retention
of liquid on the needles are different from the circular geometry or unidirectional
propagation of the thickening edge of the film, as considered in most previous studies.
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Figure 2. Initial and developed stages of the rupture of the viscous film between the needles.
The images (a)–(l) are 0.2 s apart; the images (l)–(q) are 0.6 s apart.
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Visually, the system resembles such classic flows as the rise of long bubbles in a
tube (Bretherton 1961), or the unstable displacement fingers in the Hele-Shaw cell
(Saffman & Taylor 1958). Similar to the impact of solid walls during the rise of a
long bubble in a tube (Bretherton 1961), the needles, loosely speaking, play the role
of solid boundaries for the flow. Viscous shear on them arrests the impact of surface
tension on the rim. As a result, the rupture propagates with a constant velocity in a
steady-state mode with a rim being formed on the rupture front.

A somewhat similar low-viscosity unidirectional soap/glycerol system was men-
tioned briefly by Liebman, Corry & Pierlee (1968). Though, in general, in their experi-
ments, the front was somewhat unstable and produced many very small drops, it was
found that rupture reaches a steady-state mode of propagation and propagates faster
for thinner films and larger separation between the needles. However, many details of
the process have not been studied; this is the subject of the present paper. A steady-
state mode allows us to develop a simple crude averaged theory for propagation
velocity and for the U-shaped profile of the rupture front, applicable to all Reynolds
numbers. The developed theory for the velocity propagation agrees well with the
experiments. The crude theory for the U-shaped profile of the rupture front also gives
good argeement with the experiment, though it is harder to ascertain the validity
of the theory. It is essential that the Reynolds numbers for the present experiments
are relatively small, 0.002 � Re � 0.34. It seems that in all previous experiments with
soap films, the Reynolds numbers have been much larger. It would be interesting to
evaluate experimentally the validity of the new proposed theories for intermediate
(moderately large) Reynolds numbers, i.e. for thin low-viscosity films.

2. Experiments
The photographs in figure 2, taken from above and somewhat to the right-hand

side of the film, show our experimental system and the dynamics of the rupture.
Two horizontal metal needles, each about 1 mm thick, initially touch each other. The
needles are wetted with a viscous liquid between them. After initial experimentation
with organic and aqueous liquids, organic fluids have been chosen. The reason is that
aqueous liquid films are prone to contamination and develop Marangoni flows which
generate holes in the film. Another reason for choosing organic fluids is that they do
not evaporate like soap films; this allows us to conduct more reproducible, reliable
and controllable experiments.

After a number of preliminary experiments with different organic liquids, it was
found that polybutenes were the most suitable for our set-up. Polybutenes, as well
as silicone oils, are viscous transparent Newtonian liquids. In our experiments, the
polybutenes were coloured to make thin films clearly visible. The dynamic viscosities
µ of the liquids are in the range 1000 <µ< 13 000 cP. The viscosities were measured
with the Brookfield Digital Viscometer DV-II+ (version 3.0) in the Transportation
Materials Research Center laboratory at Michigan Technological University. The
measurement error of µ was of the order of 2 %. The surface tension σ of the
samples is 0.030 ± 2 N m−1, the density ρ is 0.88 ± 1 g cm−3.

To form a film, the needles were separated by a distance H after being wetted. The
resulting film of thickness h is similar to a soap film on a frame. The organic films are,
however, substantially thicker and more viscous than soap films. The typical thickness
h of viscous films in our experiments is of the order of 10−1 mm (see table 1), whereas
soap films have a thickness of the order of 10−2–10−3 mm (e.g. see Ranz 1959). Typical
viscosity of the soap film, being comparable with water viscosity, is of the order of
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Surface Measured Calculated
tension Initial velocity velocity Reynolds

Viscosity σ Distance thickness Uµ Uµ number
Liquid µ (cP) (N m−1) H (cm) h (mm) (cm s−1) (cm s−1) Re

A 1400 ± 25 0.030 ± 2 1.6 0.15 ± 1 37.0 ± 2.0 40 0.34
A 1400 ± 25 0.030 ± 2 1.6 0.61 ± 3 18.4 ± 1.0 19.5 0.34

B 4000 ± 70 0.030 ± 2 1.1 0.10 ± 1 14.2 ± 0.8 13.9 0.03
B 4000 ± 70 0.030 ± 2 1.06 0.23 ± 2 8.6 ± 0.5 9.1 0.03

C 7500 ± 100 0.030 ± 2 0.9 0.12 ± 1 5.9 ± 0.3 6.1 0.007
C 7500 ± 100 0.030 ± 2 1.85 0.12 ± 1 9.2 ± 0.6 8.8 0.014

D 13 200 ± 150 0.030 ± 2 0.9 0.4 ± 4 1.75 ± 0.1 1.9 0.002
D 13 200 ± 150 0.030 ± 2 1.8 0.2 ± 2 3.5 ± 0.3 3.8 0.004

Table 1. Measurements of all the parameters involved. Liquids A–D are coloured grades
of Indopol polybutene of H series.

1 cP, whereas viscosity of the liquids used in our experiments is of the order of a few
thousand cP.

The most complicated and delicate part of the experiments was the evaluation of
the film thickness h. The film was ruptured immediately after the needles had been
separated to a distance H . Otherwise, over time, the levitating film tends to form drops
on its lower surface owing to the gravity. So, the measurements of the film thickness
at rest, independent of the rupture dynamics, were found to be less controllable.
Moreover, formation of the drops is a limiting factor that does not allow us to use
low-viscosity liquids in such a horizontal set-up. To measure the film thickness in
dynamics, a number of film samples with pre-measured thicknesses were prepared.
Each film sample was formed by the deposition of a small amount (0.1 cm3) of a
coloured liquid between two thin transparent pieces of glass. Then the pieces of glass
were squeezed, and the circular area occupied by the film was measured. So, given
the volume and area of each film sample, it was possible to find its thickness with
an error of less then 5 %. Further, to find the thickness h of the rupturing coloured
film, the entire experiment was digitally recorded in a controlled lighting environment
with pieces of coated glass as controls. The thickness of the dynamically rupturing
coloured film was then found by comparison of the optical density of the deposited
resting films with the optical density of the rupturing film. The technique is similar
to the method used by Vorobieff, Rivera & Ecke (1999).

As a result, prior to the rupture, each film is characterized by the following
parameters: thickness h, distance between the needles H , surface tension σ , viscosity
µ, and density ρ. Several methods of film puncturing were tried. Usually, a thin metal
needle was used. The needle is clearly seen in figure 2(a–c).

Typically, the film was punctured in the middle between the needles. Regardless
of the puncturing method, it was observed that the system ‘forgets’ the details of
rupturing and reaches the steady-state propagation mode after the moving front edge,
or rim, has run a distance of about (3 − 4)H . This is clearly seen on figure 2. In
figure 2, the film was intentionally punctured near the right-hand needle (figure 2a–e),
to demonstrate that details of the puncturing are not important for subsequent
dynamics: structure of the rupture equilibrates quite fast.
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Propagation of the rupture has a few stages (figure 2). At the initial stage of
propagation before reaching the needles, the rim collects the liquid in front of it and
thickens. The needles are immobile in space, and surface tension, diminishing the free
surface area of the film, ‘pulls’ the liquid toward the needles. After the rim reaches both
needles, its thickness stabilizes. This occurs because of the dynamic equilibrium of
two processes: collection of the liquid by the moving rim and simultaneous retention
of the liquid on the needles. (Retention of the liquid on the needles is the reason
why the needles look thicker than they are.) Such equilibrium of mass dynamics leads
to the constant velocity propagation mode. Far ahead of the rim, the film remains
undisturbed and motionless. The rim is clearly seen during the motion, though the
resolution of the digital camera used does not allow its precise measurements (see a
darker area on the front of the rupture on figure 2 and on figure 5 below).

During the propagation process, a U-shaped profile is formed in the horizontal
plane. The rupture propagates with constant velocity Uµ in a steady-state mode with
a steady profile along the needles, until the film breaks up completely. Velocity Uµ

was measured through the processing of digital video records of the experiments.
Study of the digital images showed that the film thickness was quite homogeneous.

In the least controllable cases, the local maximal non-homogeneity of the film
thickness could reach up to 20 %. Note in this respect that the same order of
non-homogeneity (about 20 %) of the film thickness was observed in the experiments
with soap films by Ranz (1959).

Many experiments with various liquids, colourizations, thicknesses and separation
distances were conducted to create the most controllable experimental environment.
Generally, the adopted experimental technique turned out to be reliable. Typical
results of the experiments are given in table 1.

It was observed that rupture propagates faster for thinner films, wider distances
between the needles, and less viscous liquids. Notice also that the needles are sub-
stantially thicker than the film itself. It seems therefore that change of needle thickness
would not affect the velocity of rupture propagation, but this was not checked
experimentally.

3. Theory
3.1. Dimensional analysis

Generally, the following six parameters characterize the entire system: U, H, h, σ, µ, ρ.
It turns out that three independent dimensionless parameters may be formed from
those variables. In particular, a natural choice of parameters is capillary number
Ca =µU/σ , Weber number W =U 2ρh/σ , and geometric ratio h/H .

When viscosity is small, the rupture process is driven by inertia, viscosity is excluded
from the set of essential parameters, and only two dimensionless parameters remain
for description of the inertia-dominated regime: geometric ratio h/H and Weber
number U 2ρh/σ . It can be assumed, in the usual spirit of dimensional analysis, that
one of these parameters is a function of the other:

W =
U 2ρh

σ
= G

[
h

H

]
. (2)

To evaluate the character of the function G, notice that across the thin levitating film
the pressure is constant and equal to the atmospheric pressure. Therefore, in such an
inertia-dominated regime, away from the rim, the liquid particles do not interact with
each other (pressure is constant), and are ‘unaware’ of the external size of the system
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Figure 3. The cross-sectional profile of the rim during the rupture process.

H . This means that the velocity of the rupture propagation does not depend on H .
Hence, function G in the right-hand side of (2) is, in fact, constant, independent of
the geometric ratio h/H . This naturally leads to the Taylor–Culick formula, (1), for
velocity, with constant G being equal to 2.

The experiments described above are, however, for the viscosity-dominated regime
and can be considered under the assumption of negligible inertia. Small inertia may
be interpreted as an indication that ρ is not an important parameter. So, we can
assume that, in fact, only five parameters U, H, h, σ, µ characterize the slow rupture
of the film, and only two dimensionless parameters remain for description of the
viscosity-dominated regime: capillary number µU/σ and h/H . As previously, it can
be assumed that one of those parameters is a function of the other:

Ca =
µU

σ
= F

[
h

H

]
, U =

σ

µ
F

[
h

H

]
. (3)

Note that both for the diminishing thickness h of the film, and for the increasing
distance H between the needles, the rupture propagates faster (this was also found
in experiments by Liebman et al. 1968). This means that F ′(x) < 0. Notice at the
same time that typically h � H . So, in fact, only the asymptotic regime h/H � 1 is
considered in the present study. It may be assumed that in such an asymptotic limit
h/H → 0, function F (h/H ) acquires a power form F (h/H ) = (h/H )α (Barenblatt
1996). This assumption will be verified in § 3.3.

This dimensional analysis allows us to anticipate the results of more precise
considerations below.

3.2. Rim thickness

The propagation velocity Uµ will be found in the next section through the forces
balance. Capillarity is one of the crucial forces in the system. To evaluate the
capillary impact, we assume that the rim has a quasi-circular cross-sectional profile
of characteristic radius r (figure 3).

For evaluation of the rim radius r , we shall use gross mass balance. To do that,
it is necessary to evaluate the typical extent δ of the region in front of the rim, in
which the acceleration of the fluid, and hence energy dissipation, occur. The next
consideration closely follows the classic arguments by Culick (1960). We suppose that
the acceleration of the fluid takes place within a distance δ in front of the rim where
the film thickness is approximately h, which is not valid very close to the needles.
The volume, where the energy dissipation occurs, is roughly equal to Hhδ. The rate
at which the energy is dissipated is of the order of

µ

∫ (
dv

dx

)2

dx, (4)

where the integral is taken over volume (Landau & Lifshitz 1959), and v is the flow
field of the system. Since dv/dx � Uµ/δ, the approximate value of the integral is about
µ(Uµ/δ)2Hhδ. In the typical soap-film system, half of the surface tension energy is
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dissipated, and half goes toward the increase of kinetic energy of the thickening rim,
as was stressed by Taylor (1959) and Culick (1960). In the viscous film considered in
the present paper, there is no increase in the kinetic energy of the moving film owing
to the stationary character of the flow. Therefore, all the surface energy in the system
is dissipated. Hence, the rate of the energy dissipation is equal to the rate at which
surface energy in the system is released (and not to its half, as in analyses by Taylor
1959 and Culick 1960). The latter is equal to the surface tension multiplied by the
rate at which surface area disappears, 2σUµH . This results in the following:

µ

(
Uµ

δ

)2

Hhδ = 2σUµH, δ =
µUµ

2σ
h. (5)

Using typical values from table 1, we find that δ � 10h � 1.5 mm � H and δ � h.
Notice that Culick’s (1959) estimation of δ in soap films gives δ � 0.2h. Therefore,
whereas in low-viscosity soap films the transition zone is quite small (δ � 0.2h), it is
quite large in the thick viscous films considered here (δ � 10h). This is completely in
line with usual intuition about viscous flows, and differs only by a factor of 2 from the
result of Culick (1960), and is not an unexpected result. This also completely agrees
with results of numerical simulations by Brenner & Gueyffier (1999). In addition,
Sünderhauf et al. (2002) explicitly demonstrated that the rim extends into the film on
a distance proportional to capillary number Ca (inverse of their Γv parameter, p. 199;
see fitting parameter c on figure 5, p. 201, and derivation on p. 202).

Notice, however, that though in our system the size of the viscous transition zone
δ is about one order of magnitude larger than h, it is about one order of magnitude
smaller than H . Therefore, we can use a consideration similar to that from the
dimensional analysis above which leads to the Taylor–Culick formula, (1). Namely,
near the centre between the needles, the distance to the needles is of the order of
H/2 � δ. This means that at distance δ from the rim near the centre between the
needles, the film thickness is very close to h, and pressure is very close to constant
atmospheric pressure. Therefore, locally, in the centre between the needles, the liquid
particles propagate as if they are ‘unaware’ of the external size of the system H .
We can use therefore the initial rupture stage, when the expanding rim from the
puncture in the middle between the needles just reached the needles, as a model for
the rim during the entire motion. We assume therefore that we can approximate the
front of the rupture by a thin half-torus of diameter H and cross-sectional radius r .
Therefore, for the purposes of gross mass balance and estimation of rim thickness
r , we can assume that the mass of the uniform film from the semicircle between the
needles, (1/2)π(H/2)2hρ, is concentrated in the thin semi-torus rim of cross-sectional
radius r between the needles. Using the formula for the mass of the thin half-torus
(πH/2)πr2ρ, we obtain:

1

2

πH 2

4
h =

πH

2
πr2, r =

1

(4π)1/2
(Hh)1/2. (6)

Using (6) for evaluating r , with typical values H = 1.6 cm and h =0.15 mm, we derive
r � 0.43 mm. This means that r � 3h and the rim thickness 2r is of the order of 6h.
It was difficult to measure the rim thickness through the processing of the digital
images owing to the high curvature of the rim surface and its relatively small width.
Nevertheless, it was clear both from the visual observations of the experiment and
digital images, that the rim is a few times thicker than the film itself.
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At the same time, δ is of the same order, or somewhat larger, than r . This shows that
the transition zone in front of the rim contains a liquid amount which is not negligible
in comparison with the ‘quasi-circular’ rim. However, derivation of (6) assumed that
the rim contains all of the liquid from the semicircle. This shows that approximation
(6) is in fact quite crude. Nevertheless, being conceptually simple, without adjustable
parameters, and derived from first principles, expression (6) has its own merit. In spite
of its crude nature, it is used below for the evaluation of forces balance.

Notice that near the needles, the reasoning that led to the derivation of (6) is not
applicable. When the rim approaches the needles (when the distance from the rim to
the needles is of order δ), conservation of mass leads to the thickening of the rim
compared to r . Indeed, assume that at the last stage of the flow, the entire mass of the
ruptured film is concentrated in two uniform circular rims of cross-sectional radius
r̄ near the needles. Equating the volume of the initial quiescent film per unit length
along the needles Hh, and the volume of the rims of radius r̄ per unit length at the
final stage near two needles 2πr̄2 yields:

2πr̄2 = Hh, r̄ =
1

(2π)1/2
(Hh)1/2. (7)

As may be seen, r̄ is indeed larger than r , though of the same order.

3.3. Asymptotic force balance

To find the rim propagation velocity Uµ, let us consider the forces acting on the
rim element. To estimate viscous forces, notice that overall, the rupture dynamics is
unidirectional. Hence, we assume that in the steady-state mode the surface tension
forces on the edge of the rupture are balanced by the viscous shear forces, while the
inertia of the rim is neglected.

To evaluate the viscous shear forces we notice that the liquid is immobile on the
needles (x = ±H/2). At the same time, the liquid at the centre of the front moves with
velocity Uµ. So, the velocity gradient is of order 2Uµ/H , therefore the viscous stress
is of order 2µUµ/H .

As for the surface tension, we assume that the rim has a quasi-circular cross-
sectional profile (see figure 3). Notice that δ � 10h and 2r � 6h (diameter of the rim)
are of the same order. This suggests that the quasi-circular cross-sectional profile
assumption, though not ideal, is roughly correct. Also, the results of numerical
simulations and shapes of the rim, shown by Sünderhauf et al. (2002) support such
an assumption. We might expect that for the crude averaged force balance, the
quasi-circular cross-sectional profile of the rim would be a reasonable approximation.

Notice that the film is thin and r � H , therefore the curvature across the rim is
dominant. So, the surface tension stress is of the order of σ/r . Balancing viscous and
capillary stresses, we obtain

2µ
Uµ

H
=

σ

r
, Uµ =

σ

2µ

H

r
. (8)

Substitution of r from (6) yields:

Uµ = π1/2 σ

µ

(
H

h

)1/2

. (9)

Equation (9) gives an asymptotic value of the rupture velocity on the assumption
of negligible inertia. Table 1 presents the results of the theoretically obtained values
of Uµ from (9) in comparison with the velocity measurements. Though the analysis
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leading to (9) is crude, it gives good results. At the same time, for the typical thickness
h =0.15 mm, the Taylor–Culick velocity UT C , given by (1), is equal to 67 cm s−1. All
the velocities, observed in our experiments, are rather lower than this value. This fact
and the agreement between theoretical and experimental velocity values corroborate
the assumption of negligible inertia.

Using (9), we obtain δ = πr; the observation that δ and r are of the same order was
mentioned before. So, the derivation above led to the self-consistent theory.

Now let us consider the Reynolds number Re of our system. Notice that the film far
from the rim remains motionless. We consider δ as a characteristic ‘intrinsic’ length
scale. Using (9) and (5), the expression for the Reynolds number Re = ρUµδ/µ yields:

Re =
ρπσH

2µ2
=

U 2
µ

U 2
T C

. (10)

From (10), we see that the Reynolds number of the system does not depend on the
film thickness h. This is becuase both UT C and Uµ are inversely proportional to h1/2.
As might be expected, the Reynolds numbers for our system are smaller than 1 (see
table 1).

3.4. Full balance of forces

In the experiments conducted in the present study, viscosity and surface tension
control the flow. It is worth, nevertheless, considering the rupture of a low-viscosity
film between two parallel needles, when inertia is significant. This would correspond
to the rupture of, say, soap films between the needles. We assume that the rupture
propagates in a steady mode (as was found by Liebman et al. 1968), but the velocity U

is different from that of the viscosity dominated regime Uµ. The dynamic equilibrium
between mass accumulation on the rim and mass retention on the needles allows us
to close the problem. Evaluation of the rim radius r in § 3.1 was based on kinematic
considerations and was independent of the nature of the forces in our system.
Therefore, we adopt (6) for the rim radius r in our analysis of full forces balance.

To derive momentum balance, consider the dynamics of the liquid particles on
the rim in detail, similar to that by Taylor (1959) and Culick (1960). After being
absorbed by the rim, the liquid particle begins to move with velocity U and then slips
away along the rim towards the needle. Therefore, the flow area near the rim may
be considered as consisting of two areas: at the centre between the needles the liquid
particles acquire momentum, while the area near the needle is the sink of slowly
moving mass with negligible momentum. This allows us to use averaged momentum
balance on the rim to find U .

Gross momentum increment d[MU ] of the front edge of the rim during time dt is
approximately equal to:

d[MU ] = U dM = ρHhU 2 dt, (11)

where dM = ρHhU dt is the mass increment of newly absorbed moving liquid,
U = const. Therefore, in the spirit of Taylor (1959), conservation of averaged
momentum for the steady-state mode in the cross-sectional plane perpendicular
to the needles gives:

Fσ dt = d[MU ] + Fµ dt, (12)

Fσ = 2σH, Fµ = 4µUr. (13)

Here, Fσ and Fµ are the gross forces due to the surface tension and viscosity,
respectively. Both Fσ and Fµ are obtained by multiplication of stresses in (8) by the
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Figure 4. U as a function of Uµ for UT C = 5, 10, 20.

crude expression for the cross-sectional area on the front of the rim 2rH . Substitution
of (13) and (11) into (12) yields:

2σ

ρh
= U 2 +

4µr

ρHh
U, 1 =

(
U

UT C

)2

+
U

Uµ

. (14)

Expression (14) is valid both for small and large viscosities of the film. Simple analysis
of equation (14) shows that U → UT C as Uµ → ∞, and U → Uµ as UT C → ∞. This is
illustrated by figure 4. In the case of large µ, velocity Uµ is small, the first inertial
term in the right-hand side of (14) is negligible, and the asymptotic expression for
viscosity dominated regime (8) is recovered. For small values of µ, velocity Uµ is
large, the second viscous term in the right-hand side of (14) is dropped, and we derive
the Taylor–Culick formula, (1), for the rim velocity.

Equation (14) gives the expression for U as a function of Uµ and UT C through the
system parameters h, H, σ, ρ, µ. Solutions of (14) are shown in figure 4. Here we do
not consider the negative root of U , since it has no physical meaning.

Note that the classic theory of Taylor and Culick describes asymptotic values of U

shown as horizontal lines in figure 4. At the same time, (8) describes the straight-line
asymptotics near the origin in figure 4. It would be interesting to conduct experiments
on a broad range of viscosities and film thicknesses to evaluate equation (14).

Notice, however, the important difference between the rupture process in the
previous studies and between the needles. Generally speaking, in all the previous
papers, the rim collects all the liquid of the film, and the film itself is not constrained.
As a result, the rim thickness grows in time. This is true both for axisymmetric
geometry and a one-dimensional film contraction, as considered by Brenner &
Gueyffier (1999). In contrast to that, in the film rupture between the needles, the
rim thickness does not grow in time owing to dynamic mass retention on the needles
(see § 2). At the same time, the needles act as solid boundaries and restrain the
propagation velocity of the rim.

On the other side, long bubble propagation considered by Bretherton (1961) is
also different from our system because the liquid between the bubble and the tube
walls is conserved, and cannot be ‘squeezed out’. Unlike that, in our system, liquid
is accumulated on the needles, and is effectively ‘squeezed out’ into an additional
dimension perpendicular to the plane of the film. The same argument applies to
the finger propagation studied by Saffman & Taylor (1958). The liquid between the
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Rim

Theory

H = 1.5 cm

Figure 5. Comparison of experimental U-shaped profiles with crude theory for viscosity
dominated regime, U/UT C = 0.

walls and the finger is conserved, and cannot be ‘squeezed out’ into an additional
dimension. This is why the comparisons of our system with well-known classic flows
bring only limited insight into the rupture dynamics.

3.5. U-shaped profile for viscous case: crude theory

Our system reaches steady-state propagation mode with constant velocity Uµ. It allows
us to propose a crude theory for the instantaneous profile y(x) of the rupturing film.
Conceptually, we will use the same forces balance as above. In addition, in an
obvious stretch of its averaged nature and in its applicability, we will apply averaged
considerations locally to every element of the rim.

Consider the normal velocity Un of the rim particles, which have components in
both the x- and y-directions. Since the y-component of velocity is equal to Uµ for all
particles, the expression for Un reads:

Un =
Uµ

(1 + y ′2)1/2
. (15)

The system is symmetric with respect to the centreline between the needles. Thus,
consider the case x � 0. The liquid at the needle (x = H/2) is immobile, whereas at
(x, y(x)) it moves with velocity Un, defined by (15). So, the velocity gradient for the
liquid particles on the rim can be written as Un/(H/2 − x), 0 � x <H/2. The film
is thin and r � H . Therefore, we can make a crude assumption that the asymptotic
forces balance for the viscosity controlled regime (8) remains valid. Consequently,
we shall use the normal velocity Un and distance H/2 − x instead of Uµ and H/2,
respectively, to define velocity gradient. Thus, (8) takes form:

µ
Un

H/2 − x
=

σ

r
. (16)

Substitution of (8) and (15) into (16) yields:

H/2

H/2 − x
= (1 + y ′2)1/2. (17)

Here, the exact solution of (17) is not pursued. For x → H/2, 0 � x <H/2, the
asymptotic solution of (17) has the form y(x) � (H/2) log(1/|x − H/2|). Comparison
of the numerical solution of (17) with the experimental profile is presented in figure 5.
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Figure 6. U-shaped profiles: solid curve – for viscosity dominated regime, U/UT C = 0;
dashed curve – for inertial regime, U/UT C = 0.9.

To be visible on the picture, the numerical solution (solid line) is shifted with respect
to the profile. Overall, the solid curve in figure 5 corresponds reasonably well to
the observed U-shaped rupture profile, in spite of the crude nature of model (17).
However, the very ‘nose’ of the numerical profile is somewhat sharper that the
experimentally observed profiles.

3.6. U-shaped profile for inertial regime: crude theory

The previous section presented a crude theory for the U-shaped profile in the viscous
regime. The essence of the theory is quite crude. Nevertheless, it seems that it might
be instructive to apply the same approach to evaluation of the rupture profile y(x)
when inertia is significant (not studied experimentally in the present paper). Although
crude, the approach might provide some insight into the structure of the U-shaped
profile in the inertial regime.

We shall use the forces balance (14) and expression (15) in the same fashion
as above. We replace U by its normal component Un = U/(1 + y ′2)1/2. The inertial
component of (14) does not depend on x. Note, however, that irrespective of the
value of the Reynolds number, the viscous forces near the needles (x → ±H/2)
become dominant. At the same time, in the second term of (14), the ratio Uµ/Un

takes the form Un/(Uµ(1 − 2x/H )) owing to the viscous impact on the needles. Thus,
we recast the forces balance (14) in the following form:

1 =

(
Un

UT C

)2

+
Un

Uµ(1 − 2x/H )
. (18)

Equations (17) and (18) should be regarded as merely ‘methaphorical’ (we owe this
description to one of the referees). Their crude nature is obvious. Still, their solution
may provide some guidance and insight into the impact of inertia on the U-shaped
rupture profile.

The numerical solution of (18) is shown by a dashed line in figure 6. The rupture
profile in the inertia-dominated regime has a more flattened form, compared to that
for the viscous case. It would be tempting to conduct experiments on the rupture
of thin films less viscous than those considered in the present paper to ascertain the
validity of (18).
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4. Conclusion
The rupture of viscous films between two parallel needles has been considered.

The Reynolds number of the system lies in the range 0.002 � Re � 0.34. It has been
shown that the obtained asymptotic rim velocity (9) agrees well with the experimental
data. The rim thickness of the film has also been theoretically estimated, although
its measurements were not made. A model for the U-shaped rupture profile has been
proposed. The method of analysis is based on the crude forces balance, and leads
to the expression (14), valid for both low and high viscosities. The classic result, (1),
by Taylor and Culick is recovered in the case when inertia is significant. Since the
full model has not been compared to experiments, it would be interesting to verify
the theory for velocity and the U-shaped rim profile in a broader range of liquid
viscosities and films thicknesses.

We are grateful to Tim Endres and Jeff Allen for their help in conducting the experi-
ments. We are deeply indebted to the referees, whose numerous comments improved
the paper in many critical aspects. This material is based upon work supported by
the National Science Foundation under Grant 0325743. Our thanks also go to BP
Amogo Chemicals for kindly providing the Indopol polybutene.
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